1,256 research outputs found

    Solitonic spin-liquid state due to the violation of the Lifshitz condition in Fe1+y_{1+y}Te

    Full text link
    A combination of phenomenological analysis and M\"ossbauer spectroscopy experiments on the tetragonal Fe1+y_{1+y}Te system indicates that the magnetic ordering transition in compounds with higher Fe-excess, y≄y\ge 0.11, is unconventional. Experimentally, a liquid-like magnetic precursor with quasi-static spin-order is found from significantly broadened M\"ossbauer spectra at temperatures above the antiferromagnetic transition. The incommensurate spin-density wave (SDW) order in Fe1+y_{1+y}Te is described by a magnetic free energy that violates the weak Lifshitz condition in the Landau theory of second-order transitions. The presence of multiple Lifshitz invariants provides the mechanism to create multidimensional, twisted, and modulated solitonic phases.Comment: 5 pages, 2 figure

    Particulate emissions from large North American wildfires estimated using a new top-down method

    Get PDF
    Particulate matter emissions from wildfires affect climate, weather and air quality. However, existing global and regional aerosol emission estimates differ by a factor of up to 4 between different methods. Using a novel approach, we estimate daily total particulate matter (TPM) emissions from large wildfires in North American boreal and temperate regions. Moderate Resolution Imaging Spectroradiometer (MODIS) fire location and aerosol optical thickness (AOT) data sets are coupled with HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) atmospheric dispersion simulations, attributing identified smoke plumes to sources. Unlike previous approaches, the method (i) combines information from both satellite and AERONET (AErosol RObotic NETwork) observations to take into account aerosol water uptake and plume specific mass extinction efficiency when converting smoke AOT to TPM, and (ii) does not depend on instantaneous emission rates observed during individual satellite overpasses, which do not sample night-time emissions. The method also allows multiple independent estimates for the same emission period from imagery taken on consecutive days. <br><br> Repeated fire-emitted AOT estimates for the same emission period over 2 to 3 days of plume evolution show increases in plume optical thickness by approximately 10 % for boreal events and by 40 % for temperate emissions. Inferred median water volume fractions for aged boreal and temperate smoke observations are 0.15 and 0.47 respectively, indicating that the increased AOT is partly explained by aerosol water uptake. TPM emission estimates for boreal events, which predominantly burn during daytime, agree closely with bottom-up Global Fire Emission Database (GFEDv4) and Global Fire Assimilation System (GFASv1.0) inventories, but are lower by approximately 30 % compared to Quick Fire Emission Dataset (QFEDv2) PM<sub>2. 5</sub>, and are higher by approximately a factor of 2 compared to Fire Energetics and Emissions Research (FEERv1) TPM estimates. The discrepancies are larger for temperate fires, which are characterized by lower median fire radiative power values and more significant night-time combustion. The TPM estimates for this study for the biome are lower than QFED PM<sub>2. 5</sub> by 35 %, and are larger by factors of 2.4, 3.2 and 4 compared with FEER, GFED and GFAS inventories respectively. A large underestimation of TPM emission by bottom-up GFED and GFAS indicates low biases in emission factors or consumed biomass estimates for temperate fires

    The Univariate Marginal Distribution Algorithm Copes Well With Deception and Epistasis

    Full text link
    In their recent work, Lehre and Nguyen (FOGA 2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by an unfortunate choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most λ(n2+2eln⁥n)\lambda(\frac{n}{2} + 2 e \ln n) fitness evaluations. Since an offspring population size λ\lambda of order nlog⁥nn \log n can prevent genetic drift, the UMDA can solve the DLB problem with O(n2log⁥n)O(n^2 \log n) fitness evaluations. In contrast, for classic evolutionary algorithms no better run time guarantee than O(n3)O(n^3) is known (which we prove to be tight for the (1+1){(1+1)} EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the lower bound of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≀10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid

    Forest floor chemical transformations in a boreal forest fire 2 and their correlations with temperature and heating duration 3

    Get PDF
    samples taken pre-and post-fire were characterized using elemental and ÎŽ 13 C 24 analysis, differential scanning calorimetry and 13 C nuclear magnetic resonance. 25 During this typical boreal crown fire average maximum temperature (Tmax) at the forest 26 floor was 745 ÂșC (550&lt;Tmax&lt;976 ÂșC) with the average heating duration (t) &gt;300 ÂșC 37 Almost half of the initial total C stock in the forest floor (20 Mg C ha -1 ) was affected b

    Mutations in the C-terminal region of the HIV-1 reverse transcriptase and their correlation with drug resistance associated mutations and antiviral treatment

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Replication of HIV-1 after cell entry is essentially dependent on the reverse transcriptase (RT). Antiretroviral drugs impairing the function of the RT currently aim at the polymerase subunit. One reason for failure of antiretroviral treatment is the evolvement of resistance-associated mutations in the viral genome. For RT inhibitors, almost all identified mutations are located within the polymerase; therefore, general genotyping confines to investigate this subunit. Recently several studies have shown that substitutions within the RNase H and the connection domain increase antiviral drug-resistance in vitro, and some of them are present in patient isolates.</p> <p>Aim</p> <p>The aim of the present study was to investigate the prevalence of these substitutions and their association with mutations in the polymerase domain arising during antiretroviral treatment.</p> <p>Materials and methods</p> <p>We performed genotypic analyzes on seventy-four virus isolates derived from treated and untreated patients, followed at the HIV Centre of the Johann Wolfgang Goethe University Hospital (Frankfurt/Main, Germany). We subsequently analysed the different substitutions in the c-terminal region to evaluate whether there were associations with each other, n-terminal substitutions or with antiretroviral treatment.</p> <p>Results</p> <p>We identified several primer grip substitutions, but almost all of them were located in the connection domain. This is consistent with other in-vivo studies, in which especially the primer grip residues located in the RNase H were unvaried. Furthermore, we identified other substitutions in the connection domain and in the RNase H. Especially E399D seemed to be associated with an antiretroviral treatment and N-terminal resistance-delivering mutations.</p> <p>Conclusion</p> <p>Some of the identified substitutions were associated with antiviral treatment and drug resistance-associated mutations. Due to the low prevalence of C-terminal mutations and as only a few of them could be associated with antiviral treatment and N-terminal resistance-delivering mutations, we would not recommend routinely testing of the C-terminal RT region.</p

    The Relevance of Pyrogenic Carbon for Carbon Budgets From Fires: Insights From the FIREX Experiment

    Get PDF
    Vegetation fires play an important role in global and regional carbon cycles. Due to climate warming and land use shifts, fire patterns are changing and fire impacts increasing in many of the world's regions. Reducing uncertainties in carbon budgeting calculations from fires is therefore fundamental to advance our current understanding and forecasting capabilities. Here we study 20 chamber burns from the FIREX FireLab experiment, which burnt a representative set of North American wildland fuels, to assess the following: (i) differences in carbon emission estimations between the commonly used “consumed biomass” approach and the “burnt carbon” approach; (ii) pyrogenic carbon (PyC) production rates; and (iii) thermal and chemical recalcitrance of the PyC produced, as proxies of its biogeochemical stability. We find that the “consumed biomass” approach leads to overestimation of carbon emissions by 2–27% (most values between 2% and 10%). This accounting error arises largely from not considering PyC production and, even if relatively small, can therefore have important implications for medium‐ and long‐term carbon budgeting. A large fraction (34–100%) of this PyC was contained in the charred fine residue, a postfire material frequently overlooked in fire carbon research. However, the most recalcitrant PyC was in the form of woody charcoal, with estimated half‐lives for most samples exceeding 1,000 years. Combustion efficiency was relatively high in these laboratory burns compared to actual wildland fire conditions, likely leading to lower PyC production rates. We therefore argue that the PyC production values obtained here, and associated overestimation of carbon emissions, should be taken as low‐end estimates for wildland fire conditions
    • 

    corecore